Физические основы проектирования фильтров ПАВ

Выполнена студентом группы ФРМ-202-О Васильевым А.В. Научный руководитель: к.т.н., доцент Аржанов В.А.

Цели работы:

- 1)изучение основных этапов процесса проектирования фильтров ПАВ;
- 2)рассмотрение конструкций преобразователей для возбуждения и приема ПАВ;
- 3)обзор моделей встречноштыревых преобразователей для синтеза фильтров ПАВ.

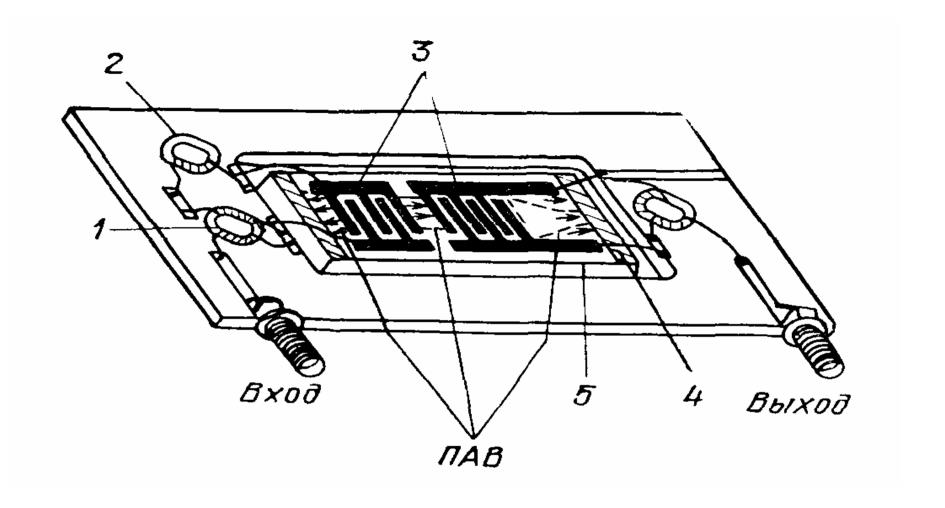


Рисунок 1. Конструкция фильтров ПАВ: 1 — трансформатор, 2 - индуктивность, 3 — преобразователи, 4 — акустический поглотитель, 5 — звукопровод.

1. Параметры интегральных пьезофильтров с локализацией энергии колебаний			
		Фильтры ПАВ	
Параметр	Лабораторные образцы	Промышленные образцы	Практические пределы
Центральная частота, МГц	1-2750	10-1000	10-2000
Минимальные вносимые потери, дБ	0,65	2,0	0,5
Минимальная полоса, %	0,01	0,1	0,005
Максимальная полоса, %	100	50	100
Минимальная переходная полоса, кГц	100	100	50
Минимальный коэффициент прямоугольности	1,15(40/3) дБ	1,2(40/3) дБ	1,1(40/3) дБ
Затухание в полосе заграждения, дБ	70	50	80
Затухание боковых лепестков или паразитных резонансов, дБ	60-70	40-50	80
Подавление сигнала тройного прохождения, дБ	55	45	60
Пульсации по амплитуде, дБ	±0,05	±0,2	±0,01
Отклонение фазовой характеристики от линейности, град	±0,1	±2	±0,1

	Таблица 2 . Схема процесса проектирования фильтра ПАВ
1 этап	Составление технического задания на фильтр: требовании к АЧХ, ФЧХ, ГВЗ, стабильности, габаритам, стоимости и т.п.
2 этап	Выбор материала звукопровода по требованиям к вносимому затуханию и стабильности
3 этап	Выбор структурной схемы фильтра: вида, количества способов включения и методов взвешивания конструктивных элементов (преобразователей, ответвителей, волноводов, отражателей, экранов и т.п.)
4 этап	Синтез фильтра по выбранной структурной схеме и заданным требованиям к его конструктивным элементам, расчет топологии
5 этап	Расчет согласующих цепей и рабочих характеристик фильтра, коррекция топологии
6 этап	Учет и компенсация эффектов второго порядка, коррекция топологии
7 этап	Получение машинных носителей информации для тех-нологического оборудования с целью изготовления фотошаблонов и выпуска конструкторской документации
8 этап	Оптимизация по стоимости, габаритам, чувствительности, времени изготовления и т.п.
9 этап	Изготовление и испытание лабораторных образцов

Таблица 3.	Основные конструкц	ии ВШП для фильтров П	AB
Тип ВШП и способ взвешивания	Конструкция	Достоинства	Недостатки
1.Неаподизованный эквидистантный без взвешивания)		Простота расчета	Плохая прямоугольность, большой уровень боковых лепестков
2. Неаподизованный с расщепленными электродами (без взвешивания)		Малый коэффициент отражения	Большая вероятность дефектов изготовления
3. Аподизованный эквидистантный (взвешивание изме- нением длины электродов)	中中	Высокий коэффициент прямоугольности, полоса до 30%	Искажение фазового фронта ПАВ и чувствительность к дифракции
4. Аподизованный с пассивными электродами вне зоны перекрытия электродов		Снижение фазовых искажений фронта	Искажение АЧХ из-за отражений от пассивных электродов, чувствительность к дифракции ПАВ
5. Аподизованный с расщепленными индивидуально взвешенными электродами		Малый коэффициент отражения, возможность реализации сложных АЧХ	Большая вероятность дефектов изготовления

6. Аподизованный с изломом электродов вне зоны перекрытия		Малый коэффициент отражения	Чувствительнос ть к дифракции
7. Аподизованный секционированный (изменение длины и периодическое прореживание электродов)		Малый коэффициент отражения	Ангармонически е отклики в АЧХ
8. Аподизованный с металлизацией вне зоны перекрытия	~vJ]][rr-	Малый коэффициент отражения	Дисперсия ПАВ
9. Аподизованный с малым взвешиванием электродов	7777 1111 1111 Addata	Уменьшение отражения и переотражения	Фазовые искажения фронта ПАВ
10. Со ступенчатым фронтом излучения		Возможность подавления объемных волн	Дифракция парциальных пучков

11 . Однонаправленный (сдвиг двух половин ВШП на 90^{0})	Фазовра- щатель 90%	Высокочастотнос ть	Узкая полоса, большой уровень боковых лепестков
12. Модифицированный однонаправленный		Широкополосност ь	Верхняя граничная частота ниже в 2 раза
13. Со взвешиванием ширины электродов		Однородность звукового пучка по апертуре	Недостаточный выбор реализуемых АЧХ, большой уровень боковых лепестков
14. Со взвешиванием селективным удалением электродов		Снижение фазовых искажений фронта и дифракции	Увеличение уровня боковых лепестков при рас- стройке
15. Наклонный	Canal Canal	Снижение акустических отражений	Высокие вносимые потери

16. Эквидистантно- групповой (изменение периода)		Уменьшение дифракции	Большой уровень боковых лепестков
17. Неэквидистантный неаподизованный (взвешивание периода электродов вдоль направления ПАВ)		Широкополосная дисперсия	Изрезанность фазовой характеристики, большой уровень боковых лепестков
18. Неэквидистантный аподизованный (изменение периода и длины электродов)		Возможность управления видом АЧХ	Дискретная изрезанность фазовой характеристики
19. Веерный неаподизованный (со взвешиванием периода электродов поперек направления распространения ПАВ)		Высокий коэффициент прямоугольности	Большой уровень боковых лепестков
20. Веерный аподизованный (изменение периода и длины электродов)	WIII)	Высокий коэффициент прямоугольности	Большой уровень боковых лепестков

21. Семкостным взвешиванием	Отсутствие дифракции, малое взаимное влияние электродов	Необходимость подавления противофазного излучения
22. С последовательным взвешиванием электродов	Слабая чувствительность к замыканиям, снижение дифракции	Ангармонические отклики в АЧХ
23. Дифракционный	Малая чувствительность к разрывам электродов, повышение уровня допустимой мощности	Малая эффективность преобразования
24. С пьезоэлектрическим слоем Стема	Возможность использования аморфных подложек, управления эффективностью	Дисперсия, усложнение технологии
25. Сакустическим согласующим слоем	Уменьшение потерь преобразования	Усложнение технологии

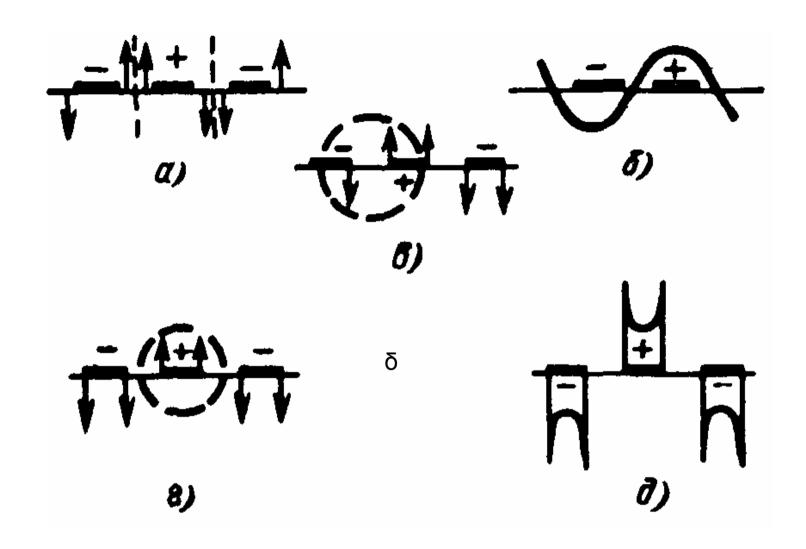


Рисунок 2. Элементарные источники, отражающие возбуждение ПАВ в различных моделях ВШП: а) – эквивалентных схем, б) – импульсной (синусоидальной), в) – δ-функций, г) – модифицированной δ-источников, д) – спектрального взвешивания

ЗАКЛЮЧЕНИЕ

- Из всех описанных моделей наименьшую погрешность в широ-ком диапазоне частот и на разных рабочих частотах (гармониках или основной частоте) дает модель спектрального взвешивания, т. е. она наиболее точно характеризует свойства ВШП в первом приближении.
- Для узкополосного фильтра разницы между моделями практически нет. Если при расчете нужна высокая точность, особенно на частотах, которые приводят к заметной асимметрии характеристик в рассматриваемой полосе частот, предпочтительна модель спектрального взвешивания. Из всех рассмотренных моделей аналитически она самая сложная.
- Следует отметить, что не существует простой и универсальной модели ВШП, позволяющей рассчитать его характеристики и топологию не только в первом приближении, но и с учетом всех эффектов второго порядка. Поэтому обычно на начальных этапах проектирование ведется по одной из рассмотренных моделей, а затем результаты уточняются с привлечением других моделей или численных методов, учитывающих те или иные эффекты: дифракцию, отражения, генерацию ОАВ и т. п.

Спасибо за внимание!